US Dept of Energy Low Dose Radiation Research Program:

The Application of Genome Data to the Important Problem of Risk from Low Dose Radiation Exposure

Dr. Antone Brooks Washington State University Tri-Cities Richland Washington 99352

Presentation Goals

- Review the Low Dose Program
- Suggest ways the Genome Program may continue to contribute to the understanding of risk from low doses of radiation.

Problems Associated with Estimating Health Risks of Radiation

- Background radiation
- Background cancer
- Radiation is a poor Carcinogen

Normal annual exposure from natural radiation

300 mrem/yr

Radon gas Human body 200 mrem 40 mrem

Rocks, soil Cosmic rays 28 mrem 27 mrem

Normal annual exposure from man-made radiation

70 mrem/yr

Medical procedures Consumer products

53 mrems 10 mrems

One coast to coast airplane flight

2 mrems

Sleeping with another person

Watching color TV

1 mrem

1 mrem

Linear No Threshold

Nose Dose

Non-Linear Threshold

Is risk always proportional to dose?

Can any amount dose increase risk?

Can a single radioactive ionization can cause cancer?

Why now?

- Standards have been set from high dose effects, but low dose effects have not been measurable until now
- New technological developments and biological discoveries have made it possible to study low dose effects

DOE Low-Dose Radiation Research Program

- A 10 year program
- Focused on biological mechanisms of low-dose (< 0.1 Gy) and low dose-rate (< 0.1 Gy / Yr) radiation
- International in scope (currently 49 projects)
- To develop radiation standards based on risk
- We are interested in your ideas or proposals

http://lowdose.org

Key Research Areas

- Technological Advances
- Biological Advances

Regulation of Gene Expression

- DNA Damage and Repair
- Bystander Effect
- Adaptive Response

Rapid Sequence Information

- Genetic Susceptibility
- Characterize Mutations
- Generation of Transgenic Animals

Bystander Effects

Microbeam

Each cell hit by one particle

10 % of cells hit with 10 alpha particles

Hall

DIFFERENCES IN TRANSCRIPTION PROFILES BETWEEN LOW AND HIGH DOSE IRRADIATION IN HUMAN LYMPHOBLASTOID CELLS

Numbers of Genes Differentially Regulated in HLB Cells after IR

Up-regulated at 2Gy 71

Down-regulated at 2Gy 147

Up-regulated at 0.1Gy 191

Down-regulated at 0.1Gy 141

Wyrobek

Genetic Susceptibility

Who is susceptible to radiation?

Rapid gene sequencing makes identification possible.

Summary

- Scientific advances in the genome program have made it possible to focus on mechanisms of response to low dose radiation.
- The genome program provides scientific basis for radiation standards that are appropriate and adequate.
- Additional advances are necessary to understand and quantify low dose radiation risk.